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An experimental technique for measuring time-resolved coherence loss and destruction of backscattered
wave packets in random media is described. The results of such measurements, performed with a modified
Michelson interferometer, contain rich information about the characteristics of media nonuniformities. Experi-
mental data for model nanosuspensions are compared with theoretical expressions developed in the paper
which include the effects of Mie-type resonant scattering. We attribute one such observed effect to enhanced
ineleastic optical transitions near the surface of nonmetallic nanoparticles. The inverse problem of character-
ization of multiscattering random media by backscattering is also considered.
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I. INTRODUCTION

Coherence effects in the propagation of optical and other
classical and quantum waves in multiscattering nonuniform
media have attracted a great deal of attention during the last
25 years. Because both constructive and destructive interfer-
ence of multiply scattered waves can occur in such media, a
variety of peculiar effects including fluctuational waveguid-
ing and wave localization can occur. The consequences of
such effects in random systems are qualitatively different
from those occurring in the optics of regular crystal-type
structures and thus require new theoretical approaches to ac-
curately describe them.

The propagation of electromagnetic waves in random
structures has traditionally been described using a photon
diffusion model. In typical diffusion models, it is assumed
that phase information is partly or completely lost after a
finite number of scattering events as described by the trans-
port mean free path, �mp, which is the distance electromag-
netic waves travel in the medium before their phase charac-
teristics are randomized. However, phase effects can in fact
survive in random media after multiple light scattering
events at relatively long distances and can lead to nontrivial
phenomena not predicted by the framework of diffusion
theory. The possibility of the manifestation of such phase-
dependent interference effects in multiscattering media was
suggested in pioneering works by Watson �1� and De Wolf
�2� and remains a subject of great interest. For a broader
view of this topic in the literature, see �3–10�.

The realization of such an effect in optics was first experi-
mentally confirmed in 1984 by Kuga and Ishimaru and in
1985 by van Albada and Langedijk and by Wolf and Maret
�10�. In these experiments, the characteristics of the back-
scattered light were measured using incoherent intensity de-
tection methods. Our study of the coherence loss in backscat-
tered light can be considered as a further advancement of the
above-mentioned works using coherent signal detection.

In this work, the detailed coherence structure of light
backscattered from a bulk system with nanoscale nonunifor-

mities was investigated. Aqueous suspensions of noninteract-
ing mesoscopic spherical particles were used as a simple
experimental model. The measurements, collected with the
help of a modified Michelson interferometer, allow us to
compare two parts of a split incident wave packet; a refer-
ence wave packet and a signal wave packet which has been
reflected and partially destroyed after traveling in the bulk
sample as the result of scattering by large scale and short
scale nonuniformities. These measurements can be consid-
ered as the optical realization of the type of experiments
proposed in nuclear physics and mentioned by Dodd and
McCarthy �11� as early as 1964. By changing the optical
length of the travel distance for the reference wave packet
before mixing both packets, it is possible to examine the
characteristics of light coherently reflected from the nonuni-
form sample bulk after different dwell distances, �, inside the
sample. Such examinations open new possibilities for de-
tailed in situ optical evaluation of the statistical and dynamic
characteristics of multiscattering systems of nanoparticles
and other mesoscopic irregular structures with dimensions
from a few to hundreds of nanometers.

Possible applications of this technique include analysis of
particle suspensions, colloidal dispersions, and polymer so-
lutions. Such evaluations are important in a number of new
nanotechnologies �12,13� and medical diagnostics and thera-
pies �14�. To realize this potential, however, it is necessary to
solve the nontrivial inverse problem; that is, to find theoret-
ical expressions for the relation between observed signals
and studied system properties. In this paper, we construct
such a theoretical model following the general ideas pro-
posed in our previous work �15�.

The first theoretical problem is to relate light propagation
characteristics with individual scatterer properties in a me-
dium containing randomly distributed scatterers. This diffi-
cult problem, known as the radiative transfer problem, lacks
an exact analytical solution in the case of electromagnetic
waves in three-dimensional multiscattering media �5,16�.
Our approach, analogous in some aspects to the introduction
of the Fermi pseudopotential in neutron scattering �17�, is
based on an approximate expression for the effective dielec-
tric function of the system �18� which is valid for the case of
large numbers of randomly distributed particles. An impor-
tant characteristic of this approximation is that it expresses
dielectric functions through the sum of individual scattering
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amplitudes while taking into account interference effects.
The other central feature of our theory is the application

of Fock’s method for the expression of a formal solution of
wave equations in exponential form with the help of the
introduction of an additional coordinate. Such expressions
allow us to perform a quasi-Gaussian averaging over the par-
ticle distribution based on functional integral techniques
�19,20�. In our calculations we have also taken into account
the vector nature of light. Although substantially simpler
scalar-wave models have been useful in some instances, it is
becoming increasingly apparent that they fail to correctly
describe many important characteristics of optical phenom-
ena in random media.

To compare our theoretical model and the experimental
results, it is necessary to have expressions for the scattering
amplitudes of individual particles. Especially interesting and
important for practical applications is the resonance fre-
quency interval, where the wavelength of light is comparable
to the particle perimeter. In this work, approximate expres-
sions based on the Mie solution �18,21� for the amplitudes of
scattering by individual uniform spherical particles are used.
One of the important properties of such amplitudes is an
appearance of resonances described in Mie’s works over
100 years ago. Analogous resonances, which can be consid-
ered as the specific realization of so-called Redge poles when
analyzed in general wave scattering theory �18�, also have to
be present, albeit with specific structures, during scattering
by nanoparticles of different shapes and structures. They
have been observed in the cross section of light scattered by
individual particles. The results described in this paper pro-
vide the experimental confirmation that resonances of the
Mie type can be clearly identified in the scattering by ran-
domly distributed systems of particles, as it was supposed in
our earlier paper �15� and by Kim and Ishimaru �16�. The
drastic increase of the electromagnetic field near nonmetallic
nanoparticles in the parameter intervals corresponding to
Mie resonances, where particles function as individual reso-
nant antennas, opens the possibility of observing and exploit-
ing different surface-enchanced noneleastic optical transi-
tions. We discuss this possibility further in the conclusion.

The paper is organized as follows: the experimental de-
vice, model systems, and main experimental results are de-
scribed in Sec. II. The theory developed in the framework of
the nonperturbative method is provided in Sec. III, with cal-
culation details described in Appendixes A and B. The com-
parison between experimental results and theory is consid-
ered in Sec. IV. In the concluding Sec. V, the general results
are summarized and possible future applications and gener-
alizations of the described experimental and theoretical tech-
niques are discussed.

II. EXPERIMENT

The Optiphase, Inc. optical coherence domain interferom-
eter �22� is the main element of the experimental device
shown schematically in Fig. 1. The instrument light source is
a superluminescent diode �SLD� with a narrow wave-packet
bandwidth of approximately 40 nm centered around
1310 nm. A corning SMF28 single mode optical fiber with a

9 �m core is used throughout the instrument. A circulator
routes wave packets from the source to the probe and hetero-
geneous sample, and then directs the scattered wave packets
collected by the probe to an interferometer. A triangular po-
tential is applied to piezoelectric fiber stretchers, stretching
40 m of optical fiber wrapped around each stretcher to
achieve varying optical path differences between the interfer-
ometer arms on the order of a few millimeters. When the
optical path difference between the arms is within the coher-
ence length �c of the source �approximately 28 �m� and the
wave packets from each arm are in phase, constructive inter-
ference occurs. Signal processing of the interferogram results
in the discrete peaks, followed by a decay pattern, as shown
in Fig. 2. The main variable in the measurements defining the
signal value is the wave-packet dwell distance, �, which is
indicative of the optical path which backscattered wave
packets travel in the sample matrix.

The two model systems were composed of suspensions of
polymer particles at 0.01 and 0.10 volume fractions pur-
chased from Duke Scientific Corporation �23�. The standards
at 0.01 volume fraction were monodisperse polystyrene
spheres in an aqueous solution with diameters ranging from
21 nm to 1.745 �m. The mean diameters of the nanospheres
were measured using transmission electron microscopy
�TEM� and a NIST-traceable calibration, and are provided in
Table I. The deviation of sphericity for each standard is less
than 1%. The standards at 0.10 volume fraction were nar-
rowly dispersed latex spheres with particle diameters ranging
from 30 nm to 2.0 �m, as shown in Table II. Each suspen-
sion contained less than 0.1% of a Duke proprietary preser-
vative and less than 0.2% of a Duke proprietary surfactant to
prevent coalescence.

Prior to measurement, each standard suspension was in-
verted three times, sonicated for 30 s, and inverted three ad-
ditional times. After discarding several drops to waste, ap-
proximately 0.5 mL of each sample was placed in a stirred
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FIG. 1. Block diagram of the Optiphase instrument used in this
experiment. The piezoelectric fiber stretchers and Faraday reflector
mirrors form the two arms of a Michelson interferometer. Applying
a potential to the piezoelectric units stretches the optical fiber
wound around them, thus varying the optical distance the wave
packets travel. This allows detection of coherently backscattered
wave packets as a function of photon dwell distance, �, in the
sample matrix.
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vial for triplicate measurements following a random block
experimental design. The probe was inserted directly into the
suspensions to ensure measurement of the bulk of the media.
The probe is composed of an optical fiber sheathed in a
0.25 in. diameter stainless steel tube slightly offset from a
thin glass window set at an 8° angle to minimize the Fresnel
reflection from the probe-medium interface. Nevertheless,
sharp peaks from both the inside and the outside of the probe
window appear before the tailing decay profile generated
when the probe is immersed in highly scattering matrices.
The peaks from the inside and the outside of the probe win-
dow are labeled, respectively, as peaks A and B in Fig. 2.

Due to the probe design utilized in this work, a ratio be-
tween the above-mentioned probe window peaks can be used
to determine the refractive index difference between the in-
ner window-air and outer window-sample interfaces. Analy-
sis of a series of solvents with refractive indices ranging
from 1.3270 to 1.4502 was performed to establish a calibra-
tion curve of the relationship between the peak ratios result-
ing from the probe design and the effective mean refractive
index of the sample, as shown in Fig. 3. This calibration was
then applied to the suspension systems to determine the ef-
fective mean refractive index of the particle suspensions,
which was used to find �̃, the relative photon dwell distance
in the sample matrix.

The decay portions of the signal profiles obtained from
the 1% and 10% series of suspensions are shown in Figs. 4
and 5, respectively. These decay profiles are the basis for our
comparison of theory and experiment and will be more fully
discussed in Sec. IV.

III. THEORY

In the considered experiments, we measured characteris-
tics of light backscattered into the half space x1�0 �medium

1� from an aqueous suspension of particles in the half space
x1�0 �medium 2�. In the general theoretical description of
such experiments, we consider the simplest case of a non-
magnetic system described by the scalar local refractive in-
dex

n��;x� = n*�− �;x� = n1�����− x1� + n2��;x���x1� , �1�

where � is the light frequency, x is the coordinate vector, and
��x1� is the step function. For the sake of simplicity in pre-
sentation, the dielectric fluctuations outside the sample �at
x1�0� and the differences between the properties of sample
bulk and its surface layer are neglected. The sample is as-
sumed to be statistically uniform and the local refractive in-
dex n2 �� ;x� is taken in the following form:

n2��;x� = n2
*�− �;x� = n̄2��� + 	���


N�x�

N̄
,

n̄2��� = �n2��;x�� = nm��� + 	��� ,

N̄ = �N�x�� =�
�

�N��x�� , �2�

where nm ��� is the refractive index of media surrounding
the particle. The angular brackets denote averaging over the
studied sample volume and the sum is taken over all types of
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FIG. 2. Signal profile obtained from a 0.01 volume fraction
aqueous suspension of 298 nm diameter polystyrene particles. The
initial peak, labeled �A�, corresponds to Fresnel reflection from the
inside of the probe window, while peak �B� is the reflection from
the outside of the probe window. Only photons that are coherently
backscattered from the polystyrene particles and return to the inter-
ferometer are detected. In the case of highly scattering systems, this
results in a tailing signal decay immediately following the reflection
off the outside of the probe window.

TABLE I. Size characteristics of the Duke Scientific 3000-series
aqueous polystyrene particle suspensions used in this work. Sample
concentration was 0.01 solids by volume.

Particle diameter
�nm�

Relative standard
deviation of particle

diameter
�%�

21 7.1

41 4.4

60 4.2

81 3.3

102 2.9

199 3.0

269 2.6

350 2.0

404 1.0

453 0.9

491 0.8

519 1.0

596 1.0

701 0.9

799 1.1

895 0.9

1101 2.1

1361 1.8

1588 1.6

1745 1.4
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particles �. The function 
N�x� denotes the local deviation

from the mean value of sample characteristics N̄ averaged
over distances larger than particle radii but less than the
wavelength of incident light. In the following, we will sup-

pose that 
N�x� describes the nonuniformity of the particle
concentration distribution. The coefficient 	��� in Eq. �2� is
related in this case to the amplitude of light scattering by the
particles. We express 	��� through the individual scattering
events with the help of the so-called coherent phase approxi-
mation, according to which

	��� = 	*�− �� = 2�� c

�nm
Re n̄2���	2�

���
N̄�A��0� ,

Im n̄2��� = Im 	��� , �3�

where N̄� is the mean concentration of particles of the type
�, A��0� is the complex amplitude of forward light scattering
by such individual particles, and c is the velocity of light.
The imaginary component of A��0� describes the effects of
coherence loss in individual scattering events which lead to
the exclusion of scattered wave components from the mea-
sured intensity of the main course of traveling coherent wave
packets with trajectories defined by the distribution of posi-

TABLE II. Size characteristics of the Duke Scientific 5000-
series aqueous latex particle suspensions used in this work. Sample
concentration was 0.10 solids by volume. The particle size distribu-
tion is much broader for the 0.01 volume fraction polystyrene
samples of comparable particle dimensions.

Particle diameter
�nm�

Relative standard deviation
of particlediameter�%�

30 18

60 18

80 18

90 15

100 15

160 6

300 3

340 3

360 3

430 3

600 3

670 3

740 3

870 3

1000 3

1300 5

2000 4

-7.6

-7.1

-6.6

-6.1

-5.6

-5.1

0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65

C
o

h
er

en
t

B
ac

ks
ca

tt
er

(l
o

g 1
0

S
-

lo
g

10
S

o
)

Air

Methanol

Increasing
solvent

refractive
index

� (mm)

Refractive Index =
-1.1087 (Peak Ratio) + 2.2487

R2 = 0.9869

1.32

1.34

1.36

1.38

1.40

1.42

1.44

1.46

0.72 0.74 0.76 0.78 0.80 0.82
Peak Ratio

O
b

se
rv

ed
R

ef
ra

ct
iv

e
In

d
ex

FIG. 3. Detail from decay profiles of a series of solvents. The
two sharp peaks result from specular reflection off the inside and
outside of the probe window, respectively. The intensity of these
peaks depends on the change in effective refractive index which
occurs at each window boundary. The inset shows a calibration
curve constructed from the ratio of outer to inner window peak
intensities, which allows the determination of the effective refrac-
tive index of samples placed in contact with the probe.
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FIG. 4. Decay profiles of a series of 0.01 volume fraction sus-
pensions of polystyrene particles in water. Particle radii range from
10.5 to 872.5 nm. The sharp peak at the beginning of each profile is
caused by the reflection off the outside of the probe window.
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tions and shapes of nonuniformities averaged over distances
larger than wave-packet space widths. For the sake of sim-
plicity, we disregard the effect of direct nonelastic processes
in Eq. �3� and correspondingly set Im n̄2��� equal to
Im 	���. The generalization which takes into account the
possibility of bulk and surface inelastic processes is straight-
forward. The expression �3� can be valid when


	���
� Re n̄2��� . �4�

The validity condition is less stringent than Eq. �4� in some
of the following calculations when only contributions of the
imaginary part of 	��� are important. The expressions for
A��0� are relatively simple in the following two limits.
�a� In the high wavelength �small particle� limit when it is

possible to use the Rayleigh-Gans approximation �18�:

�Re A��0� = ��
c

nm	2 np
2 − nm

2

np
2 + 2nm

2 R�
3 ,

Im A��0� =
F

2
��

c
nm	3� np

2 − nm
2

np
2 + 2nm

2 	2R�
4 ��c �np − nm�R �1,

�5�

where R� is the spherically averaged particle dimension, F is
a dimensionless form factor of the order of unity, and np and
nm are, respectively, the refractive indices of the particle and
the surrounding media.
�b� In the short wavelength, Fraunhofer diffraction limit,

when

�Re A��0� = 0

Im A��0� =
�

c
nmS� � for �S� �

c

�
, 
np − nm
� nm,

�6�

where S� is the so-called radar cross section of the particle �,
which is two times larger than the geometrical cross section
�18�. In the case of a spherical particle, S� does not depend
on the direction of light propagation and is equal to 2�R�

2 .
For the theoretical description, the most nontrivial is the in-
termediate wave interval between limits �5� and �6� which
we call the resonance scattering interval. In this interval, the
scattering amplitudes are not monotonic and are critically
dependent on shape and other specific particle characteris-
tics. For this reason, the resonance scattering interval pro-
vides the most detailed data about multiscattering media
characteristics. In this work, where experiments were per-
formed with monodisperse spherical particles for the interpo-
lation between two limits �5� and �6�, we use the special
approximation for Mie’s solution �18,21� for light scattering
by uniform dielectric spheres. The approximation is de-
scribed in Appendix B.

We represent the amplitude of the reference electric field
entering in the interferometer coupler, Eref, in the form of the

Gaussian wave packet with the center frequency �=�0 and
the bandwidth � moving along the axis x1 in the negative
direction:

Eref =
E0

ref

2��
� d� exp�− i��t + n1

�

c
�2� + x1��

−
�
�
 − �0�2

2�2 � , �7�

where the parameter n1� is a variable optical length traveled
by the reference wave packet in the media with refractive
index n1, and E0

ref is its amplitude. The observed signal is
proportional to the maximum value of the envelope of the
interferogram between Eref and the wave packets with the
amplitude E�� ;x� entering the coupler after backscattering
from the sample bulk. This envelope corresponds to signal
averaging over a time interval much larger than �−1. Taking
into account such averaging, we take the expression for the
value of the signal T��� in the following form:

T��� = Max�j���� ,

j��� =��E0
ref�

2��
� d��


x−x0
�L

d3x�n1E��;x�

� exp� i�
c

n1�2� + x1� −
�
�
 − �0�2

2�2 ��� . �8�

The angle brackets in Eq. �8� again denote averaging over
sample properties, E�� ;x� is an amplitude of the complex
field with frequency � which is backscattered from the
sample with the same polarization as Eref and L is the linear
dimension of the interferometer coupler �with the position of
its center at x0= �x1

0 ,0 ,0� with x1
0�0�. L is supposed to be

much larger than both the wavelength and mean distances
between nonuniformities in the studied sample. This condi-
tion allows us to exclude from the expression for the signal
all characteristics of the coupler �such as the structure of its
eigenmodes� except its volume �L3, as well as effects of
diffraction structure from possible small-scale regular ar-
rangements of the sample nonuniformities. The latter effect
is averaged in the interferometer signal to zero. In Eq. �8�,
we have supposed that in the relevant frequency interval
n̄2��� changes with � relatively slowly and

d ln n2���
d ln �
 � 1 for �0 − � � � � �0 + � . �9�

This is not always the case, in particular when the relevant
frequencies include an interval of anomalous dispersion.

To obtain an expression for E�� ;x� convenient for aver-
aging we introduce Debye’s potentials F�1,2� �18�
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F�1,2���,x� = E��,x� ±
i

n��;x�
H��,x� , �10�

where E�� ,x� and H�� ,x� are, respectively, the electric and
magnetic vectors. The Maxwell equations for F�1,2� have the
form of the two coupled linear equations:

curl F�1,2� �
�

c
n��;x�F�1,2�

± �grad ln n��;x�,
�F�1� − F�2��

2
� = 0, �11�

where the square brackets designate the vector product. Note
that the modulus of the coefficient grad ln n�� ;x� in Eq. �11�
is equal to the inverse principal ray curvature at the point x.

In order to perform the calculations in a compact form,
we introduce the algebra of operators in a six-dimensional
space, which is the direct product �i��� of the three-
dimensional space i=1,2 ,3 and the two-dimensional photon
spin space �=1,2 with the following matrix elements of
relevant operators I, Ik�, Sk, and �1,3:

�i,�
I
j,��� = 
ij
�,��,

�i,�
Sk
j,��� = − �i,�
Sk
*
j,��� = − 
�,��ieikj ,

�i,�
�1
j,��� = 
ij�
�1
��2 + 
�2
��1� ,

�i,�
�3
j,��� = 
ij�
�1
��1 − 
�2
��2� , �12�

where eijk is the completely antisymmetric tensor in three-
dimensional space with e123=1 and 
ij is Kroneker’s symbol.
Equation �11� can now be rewritten in a matrix form as fol-
lows:

�
k=1

3

i�3Sk
�

�xk
F +

�

c
n��;x�F +

I + �1

2

��
k=1

3

i�3Sk
� ln n��;x�

�xk
F = 0, �13�

where F�F�� ;x� is a column:

F��;x� = F�1���;x�
F�2���;x�
 � �

F1
�1�

F2
�1�

F3
�1�

F1
�2�

F2
�2�

F3
�2�

� . �14�

The vector F�� ,x� obeys the following relation:

F*��,x� = �1F�− �,x� . �15�

We introduce the retarded matrix Green function G�� ;x ,x��,
which is the solution of the equation:

KG��;x;x�� � ��
k=1

3

i�3Sk
�

�xk +
�

c
n��;x�

+
I + �1

2 �k=1

3

i�3Sk
� ln n��;x�

�xk
�G��;x,x��

= I
3�x − x�� . �16�

It follows from Eq. �16� and the definition of the retarded
Green function that

S1
2�

x�−x�

0
�L

G��;x;x��d2x� =
1

2�
exp�− i

�x1

c
n1����S1

2��

x�
�L

G��;x,x��
x1=0

d2x�� for x1  0, x1� � 0; x� = �x2,x3� .

�17�

This result corresponds to the continuity of the tangential components of E and H across the sample boundary. With the help
of G�� ,x ,x��, we can rewrite expression �8� as follows:

T��� =
LI0

�2���2��F�0��+ I + �1

2
�

x�
�L


�x1�d3xd3x�� d�n1����3 � �exp�− �
�
 − �0�2

�2 + i
�

c
n̄2x1� − 2

i�

c
n1��G��;x,x��

� ��c 	���

��x��

�̄
+

I + �1

2 �k=1

3

i�3Sk
�

�xk�
ln�1 + 	���


��x��
�̄n̄2
	��F0� , �18�
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where I0 is the electromagnetic energy flow entering the
studied sample bulk and F0 describes the polarization struc-
ture of the incident light. In the following, we suppose that �
is larger than c

� and correspondingly it is possible to separate
the scattering effects at the sample surface interval with the
width smaller than c

� . We consider the case of linear polar-
ization when

F�0� = �1�F0�+ =
1

2�
0

1

− i

0

1

i

� . �19�

Now we introduce, following Fock’s idea �19�, the fifth,
timelike coordinate � and present the Green function G in the
following form:

G��;x,x�� = − i�
0

�

U���d� �20�

where U��� is the matrix function of �, �, x, x� equal to

U��� � U��;�;x,x�� = eiK�
3�x − x�� �21�

with the matrix operator K defined in Eq. �16�. In Eq. �20�
we have taken into account that

Im
�

c
n��;x�� 0. �22�

The matrix U��� has to satisfy the linear differential equation

�U

��
= iKU �23�

with the boundary condition

U�0� = I
3�x − x�� . �24�

We seek the expression for U�� ;x ,x�� in the following form:

U��;x,x�� =
e��x�

�2��3/2 � d3 p exp�ip� �x − x�� − �3�
k=1

3

iSkpk�

+
i�

c
n2��;x��� . �25�

According to Eqs. �21� and �25�, exp ��x� has to satisfy
the following equation:

� �

��
+ �3�

k=1

3

Sk
�

�xk
;e��x�� − i�

c
�n2��;x� − n̄2�e��x�

+
I + �1

2
�3�

k=1

3

Sk
�

�xk
ln�1 +

n2��,x� − n̄2

n̄2
	e��x� = 0,

�26�

where the square bracket denotes the commutator:

�A;B� = AB − BA . �27�

The relation �26� can be reduced, taking into account Eq.
�2�, to the linear equation for �

�I �

��
+ �3�

k=1

3

Sk
�

�xk
	� −

i�

c
	���


N�x���x1�

N̄

+
I + �1

2
�3�

k=1

3

Sk
�

�xk
ln�1 +

	���
N�x���x1�

N̄n̄2
	 = 0.

�28�

It follows from Eq. �28� that

���;�;x�� =
1

�2��3/2 � eiq�x�d3q�� i�3

q2 �
k=1

3

Skqk�I

− e−i��k=1
3 �3Skqk� + �I − Ĩ�q���� f�q�� , �29�

where

q = �q2, f�q� =
1

�2��3/2 � d3xe−iqx �� i�c 	���

N�x���x1�

N̄

−
I + �1

2 �k=1

3

�3Sk
�

�x	

ln�1 + 	���

N�x���x1�

N̄n̄2
	� . �30�

The exponent exp�−qi��k=1
3 �3Skqk� in Eq. �29� can be rewrit-

ten as follows:

exp�− i��
k=1

3

�3Skqk� = I + �cos �q − 1�Ĩ�q�

− i�
k=1

3

�3Skqk
sin �q

q
. �31�

The matrix Ĩ�q� in Eqs. �29� and �31� is defined by

��i
Ĩ�k�
�j� = 
���
ij −
kikj

k2 	 . �32�

The expression �30� for � satisfies the following relations:

I + �1

2
���;�;x�

I + �1

2
=

I + �1

2
�*��;�;x�

I + �1

2
,

I + �1

2 ��,I
��

��
+�

k=1

3

�3Sk
��

�xk
� I + �1

2
= 0. �33�

It follows from Eqs. �17�, �18�, �20�, �25�, �29�, and �33� that
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T��� =
LI0

�2��3/2�2���2��F0�+
I + �1

2
�3�


x��
�L


�x1�d3xd3x�� d�n1

�� d3p�
0

�

d��exp�− �
�
 − �0�2

�2 � + i
�

c
n̄2�x1� + �� − 2i

�

c
n1� + ip�x − x�� + ��x��exp�− i�3��

k=1

3

Skpk�
� ��c n̄2���	���


N�x����x1��

N̄
−  I + �1

2 �k=1

3

�3Sk
�

�xk�
ln�1 +

	���
N�x����x1��

N̄
	��F�0�� . �34�

To simplify the calculations we suppose that the following
quantity ��� is small:

��� = exp −
z2

2
	
2��
N�x�

N̄
�

2

�
� 1 for z � 1. �35�

Neglected in the following calculation are terms of the order
of ����1, which correspond to far tails of the fluctuation

distribution of optical properties where random deviations
from the applied Gaussian distribution law and irregular
speckle effects become significant. The inequality �35� allow
us to not impose the condition of non-negativity of N�x� and
make the following substitution:

ln�1 +
	
N�x���x1�

N̄
	→ 	���


N�x���x1�

N̄
. �36�

After substitution �36� we find from Eq. �34� the following
expression for T���:

T��� =
LI0 Re

�2���2��F0�+
I + �1

2
�3�


x�
�L


�x1�d3x� d�n1 �� d3p�
0

�

d��exp�− �
�
 − �0�2

�2 + ipx + i
�

c
n̄2� − 2i

�

c
n1�

+ ��x���exp�− i��3�
k=1

3

Skp̃k	� i�c n̄2 −�
k=1

3

i�3Skp̃k	 I − �1

2

n��,p��F0�;

p̃k = pk +
�

c
n̄2
k,1,


n��,p� = 	���
N�p� ,


N�p� =
1

�2��3/2 � e−ipx
N�x�

N̄
d3x . �37�

In transforming Eqs. �34�–�37�, we have made the substitu-
tion

pk → pk +
�

c
n̄2
k,l

and taken into account Eq. �31� and the identity

�3S1F0 = F0. �38�

The substitution �36� allows us also to present the ��� ;� ;x�
in the following form:

���;�;x� =  1

�2��3/2 � eiqx�̃��;�;q�
����,q�d3q
��→�

�39�

with the matrix �̃�� ;� ;q� equal to

�̃��;�;q� = i�3�
k=1

3

Skqk� i�c n̄2
1 − cos �q

q2 −
I − �1

2

sin �q

q
	

−
i�

c
n̄2Ĩ�q�

sin �q

q
+

I − �1

2
Ĩ�q��1 − cos �q�

+ i
�

c
n̄2�I − Ĩ�q��� . �40�

In Eqs. �37� and �39� there enters the following Fourier trans-
form 
��� ,q�:
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���,q� �
1

�2��1/2 � ei�t
��t,q�dt

=
	���
�2��3/2 � e−iqx
N�x�

N̄
��x1�d3x

=
	���
�2��3 � ei�q�−q�x
N�q�ei�x1

d3xd3q�d�

�i�� − i��

=
	���
i�
� dq1�
N�q̃� 1

q1� − q1 − i�


�→0

;

q̃ = �q�,q1�� , �41�

where 
N�q� is the Fourier transform of

N�x�

N̄
. The averaged-

over fluctuations of 
N�x� functions of 
��q ,�� in the fol-
lowing calculations enter only under integrals over d� and
dq�1�¯dq�n� with the integrands invariant under the inver-
sion dq�n�→−dq�n�, �→−� combined with a complex con-
jugation. This allows us to make the following substitution
for the factor ��i�q1�−q1− i���−1 under the corresponding in-
tegrals in Eq. �41�:

1

�i

1

q1� − q1 − i�
→

1

2�i
� 1

q1� − q1 − i�
−

1

+ q1� − q1 + i�
	

= 
�q1 − q1�� �42�

and to put 
��q ,�� equal to


��q,��→ 	���
1

�2��3/2 � e−iqx
N�x�

N̄
d3x = 	���
N�q�

� 	���
1

�2��3 � e−iqx
N�x�

N̄
d3q . �43�

When averaging over fluctuations 
N�x� in a sample bulk
we assume that the fluctuations are a stationary isotropic
Gaussian random process defined by the basic moments �24�:

�
N�x�� = 0,

� 
N�x�
N�x��

N̄2 � = D�x − x�� = �2 exp�− �x − x��2

a2 	 ,
�44�

where �2 characterizes the intensity of fluctuations in the
volume with dimensions defined by the coherence length �c,
with a being the correlation length. In the case of the nonin-
teracting spherical particles with the radii R we have

�2 
1

N̄�c
3
, a 

1

�3 N̄
. �45�

It follows from Eqs. �31�, �44�, and �2� that

�
���,q�� = 0,

�
����;q��
���,q�� = D���;q�;�,q�

� 
	���
2�2�a���3e−q2a2/4

�
−��;�
3�q� + q�

= D��,q�
−��,�
3�q + q�� . �46�

The factor 
−��,� in Eq. �46� follows from the time-
dependence of the correlator �
��t� ;q��
��t ;q�� only on the
difference t�− t �25�. The description of the averaging in ex-
pression �37� for T��� is given in Appendix A, where the
expression �A7� for T��� is presented in the form of a double
integral over d� and d�. The integral over d� in Eq. �A7�
can be taken �as is usually done in wave-packet descriptions�
in the asymptotic approximation with the following result:

T��� =
�I0L3�2n1

25/2�

	��0�
2 Re �

0

�

d� � exp�− 2�0

c
� Im n̄2��0� − g��0,���� f+��0,��� exp − ��2

c2 „� Re n̄2��0� − �n1…
2�

�exp 2i
�0

c
„� Re n̄2��0� − �n1… + f−��0,��exp − ����

c
	2 + 2i

�0

c
n1��� , �47�

where definitions of the functions g�� ,�� and f±�� ,��
are given in Eqs. �A2� and �A8�. In the derivation of
Eq. �47�, we have taken into account the invariance of the
integrand in Eq. �A8� under complex conjugation with simul-
taneous substitution �→−� and for simplicity we do not
take into account explicitly the effects of frequency disper-
sion in g�� ,�� and f ± �� ,��. These effects lead to the sub-
stitution in Eq. �47� of the group velocities for the phase
ones:

c

n���
→ c� 1

�
�n���

��
�

�=�0

. �48�

In the considered experiments, where n��� varies relatively
slowly in the frequency interval �0±�, and the particle con-
centration is relatively low, the disregarded dispersion effects
are unimportant.
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The remaining integral over d� in Eq. �47� can be taken in
the asymptotic �stationary phase� approximation since we
have supposed that the considered values of � satisfy the
inequality

��
c

�	2 � 1.

This inequality allows us to separate and exclude from con-
sideration surface effects. We find after asymptotic integra-
tion over d� that

T��� =
�3I0L3�2n1c

25/2�2 Re n̄2���

	��0�
2e−�0

2/�2

� �exp�− �0

c
�̃ Im n̄2��0� − g��0, �̃��

�Re f+��0, �̃�� ; �̃ = �
n1��0�

Re n̄2��0�
. �49�

In Eq. �49�, we have supposed that

„Im n1��0�…2

„Re n1��0�…2 � 1.

The structure of the exponential factor in Eq. �49� deserves
special attention. It is equal to

exp�− �0

c
�̃ Im n̄2��� − g��0, �̃�� ,

where g��0 , �̃�, according to Eq. �A2�, is proportional to
1
3 
	��0��
2�

�0

c �̃�2 for the larger �̃�a. Such quadratic depen-

dence on �̃ for the wave-packet decomposition and the light
intensity distribution homogenization is dominating at large

�̃. It is characteristic for diffusion processes �5,4� with the
effective light diffusion coefficient D proportional to

D�
�

� c�

n̄�
�
�

N̄�A��0�	2 . �50�

In the estimation �50� we have used Eq. �3� and performed a
Fourier transform over � to find the signal time dependence.
Note the dependence of the experimentally measured quan-
tities on the wave-packet width � and Lc. Analogous depen-
dences were previously discussed in �27�.

IV. COMPARISON OF EXPERIMENTAL DATA WITH
THEORY

We will compare theory with experimental measurements
in the interval

c

�
� �̃ � �̃m,

where �̃m corresponds to the value of �̃ after which the back-
scattering signal becomes undistinguishable from the back-
ground. In the realized experimental results with relatively

low particle concentrations, we have, for relatively small �̃
and R,

g��0, �̃m��
�0

c
�̃m Im n̄2��0� . �51�

To avoid excessively cumbersome expressions in our deriva-
tions, we have neglected corresponding terms with g��0 ,��
in Eq. �49� and other subsequent equations.

According to our theoretical model, the averaged experi-

mental signals S��̃� presented in Figs. 4 and 5 must have the

following form for small �̃ and R:

log10 S��� − log10 S0� log10
S���
S0

= log10�1 + CA��̃�e−B�̃� ,

�52�

where S0 is the background signal and when Eqs. �51� and
�52� hold
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FIG. 6. Plot of representative sample decay profiles with accom-
panying nonlinear least-squares fit. Decay profiles for several 0.01
volume fraction samples are shown in �A�. Decay profiles for the
0.10 volume fraction samples are shown in �B�. Note that signal
fluctuation intensities can be qualitatively seen to vary proportion-
ally with mean particle radius.
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A��̃� = Re f��0, �̃�

	��0�
2�2

Re n̄2��0�
,

B =
�0

c
Im 	��0� . �53�

The constant C in Eq. �52� characterizes the experimental
device response and is independent of the individual sample

properties. The expression for �̃ is given in Eq. �49� and all
other functions entering Eq. �53� are described in the Appen-
dixes A and B.

The expression �52� was fit to the experimental data using
a nonlinear least-squares algorithm from the curve-fitting
toolbox of MATLAB �The MathWorks Inc., Natick, MA�, with
representative decay profiles with their corresponding fits
shown in Fig. 6. We then extracted values for the 
	��0�
2
and Im 	��0� in Eq. �53� from the fit of the experimental
data, which we will refer to as � and �, respectively. The
parameters � and �, which are related to overall backscatter
intensity and the rate at which backscatter intensity decreases
as a function of �, can also be derived from theoretical con-
cerns set forth in Appendix B. Figure 7 contains a compari-
son of theoretical and experimental values obtained as � and
� as a function of particle radius.

The experiments performed elucidate the signal depen-
dence on the particle radii R=R� for samples with constant
particle volume fraction �=��=const. As seen in Figs. 6 and

7, the dependence of the experimental signal on �̃ and the
values of � and � on R reasonably fit the theoretical expres-
sions. A preliminary description of these experimental data
has been given previously in �28�. The dependence on R
shown in Fig. 7 reproduced the general shape of Mie reso-
nances. The differences between detailed experimental and
theoretical curves can be attributed to differences between
real particle structures and their uniformity supposed in Mie
theory, as well as to our application of an approximation to
Mie theory. In Fig. 8, we see a comparison of the � terms for
the 0.01 and 0.10 volume fraction sample series. The posi-

tion of the Mie resonances do not shift with the changing
particle concentration and depend mostly on the light scat-
tering characteristics of individual particles, while the inten-
sity of the resonances varies with sample concentration. This
allows us to separate information about the particle density
and individual particle characteristics, including adsorption,
in both monodisperse and polydisperse particle suspensions.

It is also worth noting that the factor �2, which enters in

expression �53� for A��̃�, decreases with increasing particle

concentration N̄ and coherence length �c, which is accompa-
nied with decreasing fluctuation effects. An analysis of signal
intensity fluctuations �Fig. 9� shows that they are much larger
than the optical polarization fluctuation in the uniform polar
media �29�. While not entirely deconvoluted from instrumen-
tal noise, the fluctuations are obviously related to nonunifor-
mities of the particle space distribution, as characterized by
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FIG. 7. Plot of fitting parameters obtained by
fitting experimental data �dashed lines� with the-
oretical expressions for the same parameters from
Mie theory �solid lines�. �A� The � and � terms
for the 0.01 volume fraction sample and �B� the �
and � terms for the 0.10 volume fraction sample.
As explained in Sec. IV, because we have ne-
glected terms with g��0 ,�� from Eq. �49�, the
expression for � used to calculate the presented
theoretical values is only valid for relatively
small values of R.
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FIG. 8. Comparison of the � fitting parameter for the 0.01 and
0.10 volume fraction sample sets. The Mie resonance maxima occur
at the same particle radius regardless of sample concentration, al-
lowing the deconvolution of particle density and particle scattering
characteristics. Highlighted in the inset are two reproducible
anomalies in signal intensity observed near the first Mie resonance
maximum in both sample sets. We attribute this increase in intensity
to surface-enhanced inelastic scattering events.
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�2. The factor �2 and corresponding fluctuations have to
increase according to Eq. �45� with increasing particle radii
at the same volume concentration �i.e., decreasing particle
number per unit volume�. Such general dependence was ob-
served in the experiments, with the indication of self-
assembly effects in the case of the smallest particle radii.

V. CONCLUSION

We have described experiments of light backscattering by
nonuniform particle containing media. The theory of the cor-
responding effects was developed in the framework of clas-
sical linear electrodynamics. The calculations were based on
the introduction of the effective dielectric function and a fifth
additional coordinate followed by functional integral averag-
ing. Gaussian averaging is adequate in the case of an equi-
librium distribution of weakly interacting particles, as well as
in the case of freely diffusing particles in liquids far from
critical points �25�. It may be possible to generalize our cal-
culations to more complex cases of quasi-Gaussian distribu-
tions. By changing the expression for the kernel D�x−x�� in
Eq. �44�, it is relatively simple to generalize these results to

cases of Poissonian distributions or finite sums of different
Gaussian distributions with different correlation lengths.
More complicated but feasible are calculations with the ker-
nel describing particle distribution correlations for charged
colloids.

The expression �50� for the light diffusion coefficient D

also allows us to estimate the Thoules time TTh�
�mp

2

D after
which localization effects in multiscattering media can cause
deviations of wave-packet destruction from the decay law,
with linear dependence of the exponent on � �26�.

Note that coherent scattering by randomly oriented and
distributed nonspherical and polarizable scatterers such as
polycrystals and liquid crystals does not require a qualita-
tively different treatment. As was shown by Placzek, the
cross sections of incoherent light scattering by the freely ori-
ented systems can contain three independent parts: scalar,
antisymmetric, and symmetric �30�. However, the cross sec-
tions of coherent scattering contain only a scalar part and
thus the effective dielectric function introduced in Eqs. �2�
and �3� for the description of the considered coherence effect
remains a scalar with nonscalar effects contributing to an
effective light absorption.

The effects of nonscalar scattering components can, in
principle, be separated and measured by the modification of
the considered techniques by imposing external fields on a
studied sample containing randomly distributed orientable or
polarizable particles �31�, then measuring the signal depen-
dence on the angle between the light polarization and the
external field. The analogous effect was observed in �32� in
studying light backscattering from orientationally ordered
liquid crystals. Optically active media can be characterized
by comparing the results of coherent backscattering of light
with the opposite circular polarizations �33�. As was stated
before, these specific effects are expected in the cases where
the anomalous dispersion effects are important.

The appearance of Mie-type resonances in our work is of
special interest. Such effects are the result of large electro-
magnetic field increases near nanoparticle boundaries in the
Mie resonance frequency interval, and such field increases
can lead to an enhancement of optical transitions and to
changes of absorption characteristics �34�. A recent publica-
tion described substantial amplification of Raman scattering
in the resonance frequency interval for molecules adsorbed
on silicon nanocones and nanowires �35�. In the relatively
simple system considered in our work, the analogous effect
can be much more pronounced with much larger boundary
surface area of spherical nanoparticles, and the results could
be relatively simply predicted and interpreted with the help
of Mie’s analytical formulas. In particular, we have observed
small anomalous increases in particle scattering intensity, as
shown in the insets of Fig. 8, which we believe can be ex-
plained as a result of a resonance scattering effect. The light
frequency in our experiments corresponds to the wavelength
region near Raman transitions corresponding to intramolecu-
lar transitions in water molecules �36�. In addition to Raman
scattering, other enhanced optical transitions and electron
photoemission effects could be observed. The possibility of
the enhancement of electromagnetic transitions near the sur-
face of semiconducting and insulating nanoparticles is note-
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FIG. 9. Analysis of signal fluctuations. �A� and �B� are, respec-
tively, the relative standard deviation �RSD� of the coherent back-
scatter signal near the beginning of the decay profiles of the 0.01
and 0.10 volume fraction samples. The fluctuations are a convolu-
tion of instrumental noise and signal changes caused by Brownian
motion of the particles in the matrix. A general trend of increasing
fluctuation intensity with increasing particle radius is observed.
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worthy for a number of optoelectronic applications, adsorp-
tion studies, and the construction of sensitive analytical
devices.

The proposed theoretical approach can be applied for the
description of a number of different wave propagation effects
in nonuniform media, in particular the description of mirror-
less lasing in random gain media, fluctuational waveguiding,
memory, and light trapping effects. The described experi-
mental technique and its modifications may be useful for in
situ monitoring of the fast dynamics of such important pro-
cesses as polymerization, gelation, phase transitions, coagu-
lations, and nucleation in colloids, dispersals, and aerosols.
The considered detection technique is also well-suited for the
screening and sorting of various metallic and nonmetallic
nanoscale particles including viruses and larger proteins, in
low concentration solutions. As mentioned at the end of Ap-
pendix B, the considered optical technique also opens in-
triguing possibilities of studying interface water solution
properties.
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APPENDIX A: AVERAGING

We will follow the rules of quasi-Gaussian averaging
�1,19,20�. According to these rules and Eq. �46�

�
����1�,q�1��¯ 
����n�,q�n��exp � O��,q�
���,q��
=


n


����1�,q�1��¯ 
����n�,q�n��

�exp�1
2
� d3q � ���− �,− q�O�− �,− q�

�D��,q�O��,q����,q���
���n,q�n��=1

, �A1�

where 



����n�,qn� denotes the functional derivative. In our

problem, the operator D�� ,q� is defined by Eq. �46� and the

operator O�� ,q� is expressed through the matrix �̃�� ,q�
introduced in Eq. �40�. Equation �A1� can be verified by a
series expansion of the exponent followed by term-by-term
averaging according to Gaussian rules with a subsequent
summation of the averaged terms. According to these rules,
the mean values of the products of odd numbers of factors

��� ,q� are equal to zero and the mean values of the prod-
ucts of even numbers of 
��� ,q� are reduced to products of
all their possible pair correlators by the Wick theorem.

We start by a calculation of the quantity g�� ,��:

g��,�� = −

	���
2�2a3

�2��3/2 �
I + �1

2
� e−q2a2/4
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In Eq. �A2� we have used the definition in Eq. �40� of �̃ and Eq. �46�.
The second quantity r�� ,p� which enters in the expression for T��� is equal to
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r��,p� � =  I + �1

2�2��3
eipx�
��p,������,�,x��

��=�

=
I + �1

25/2 
	����

2�̃�− �;�,− p�e−p2a2/4. �A3�

Note that both quantities �A2� and �A3� do not depend on x.
It follows from Eqs. �37� and �A1�–�A3� that

T��� =
L3I0

4��2 Re � d3p�
−�

�

n1���d��
0

�

d�e−p2a2/4 � �exp�− �� − �0�2
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2
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p̃k = pk +
�

c
n̄2���
k,1. �A4�

The matrix structure of Eq. �A4� can be resolved by taking into account the identities

�3S1F�0� = F0,

�F0�+�3S2,3F0 = 0, �A5�

with the following result:

T��� = −
I0L3�2
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After integration in Eq. �A6� over dz and integration by parts over d� we find from Eq. �A5� that
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The integration over dp in the expression for T��� can be made analytically with the following result:
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The functions f±�� ,�� are rather complicated. However, for comparison with experimental data we need only the limits where
��

c
�0n̄2

,
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f±��,�� = f*�− �,�� = ����c n̄2	2�1 − 2e−�2/a2
� +

6

a2�� �1 �
1

i
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c
n̄2�� + i

��3�

c
n̄2 +

2

a2�

c
n̄2��!1 + O�a2��

c
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In Eq. �A8� we have taken into account that according to Eq.
�A2�

�

��

1

�

�

��
g̃���→ 0 for � � a

and dropped the small terms proportional to the derivatives
of g̃2���.

In the case of small � we have

f±��,�� =
8

a3��c 
n̄2
�	2�1 + O��
c

n̄2
�	� . �A9�

The function f+�� ,��exp− �2 Im n̄2�� has the maximum at �
equal approximately to �m, where

�m�
1

Im n̄2

. �A10�

APPENDIX B: EXPRESSION FOR THE COEFFICIENT
�„�…

According to Eq. �3�, to evaluate 	��� it is necessary to
choose an expression for the forward scattering amplitude
A��0� in the single particle scattering regime. In the consid-
ered experiments the refractive indices of media and par-
ticles, nm and np, do not substantially differ from each other
and the following inequality holds:

�2 � 1 for � =
np − nm

nm
. �B1�

In such a case, it is possible to describe light scattering by
uniform spheres with the van de Hulst approximation to the
Mie solution �18,20�, according to which

A��0� = i
�

c
nmR�

2�1
2

+
i

y
eiy −

1

y2 �e
iy − 1�� ,

y = 2
��n̄m

c
R�. �B2�

The expression �B2� provides, with the accuracy defined by
condition �B1�, the correct limits both for small �Eq. �5�� and
large �Eq. �6�� radius limits for Mie theory if we substitute in
Eq. �B2�,

� →
3

2

np
2 − nm

2

np
2 + 2nm

2 .

In this case we get the exact expression in the small radius
limit and at the same time retain correct expressions for
A��0� for larger R� up to terms of the higher relative order of
�2.

In Mie calculations, the parameter � defines the boundary
condition at a particle-medium interface with a jump across
the boundary of the normal component of the vector poten-
tial. In our experiments, particles are surrounded by a narrow
flexible dipole boundary layer and an electrochemical double
layer �both atomic dimensions are much less than the wave-
length of incident light� responsible for the repulsion be-
tween particles. Both of these layers can contribute to the
above-mentioned jump. At the particle-solvent interface the
potential drop at atomic distances can reach 0.1–2.0 V.
Therefore dielectric properties and the boundary condition
for an electric field at the particle interface can be substan-
tially altered.

Correspondingly we consider � in the comparison with
experiment as an adjustable parameter which characterizes
the structure of the particle-medium interface, in this work
found to be

� = 1.85 ± 0.1. �B3�

The value of � can also depend on the specific structure of
water molecules near the boundary of the sample. Such de-
pendence opens the interesting possibility of studying the
statistical and dynamic behavior of interfacial water, which is
of great importance for the understanding of many physical,
chemical, and biological phenomena �37�. It follows from
Eqs. �3� and �B2� that for monodisperse samples with spheri-
cal particles we have the following expressions for 
	���
2
and Im 	���:
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+
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